

Bioinformatik für Tier- und Pflanzenwissenschaften

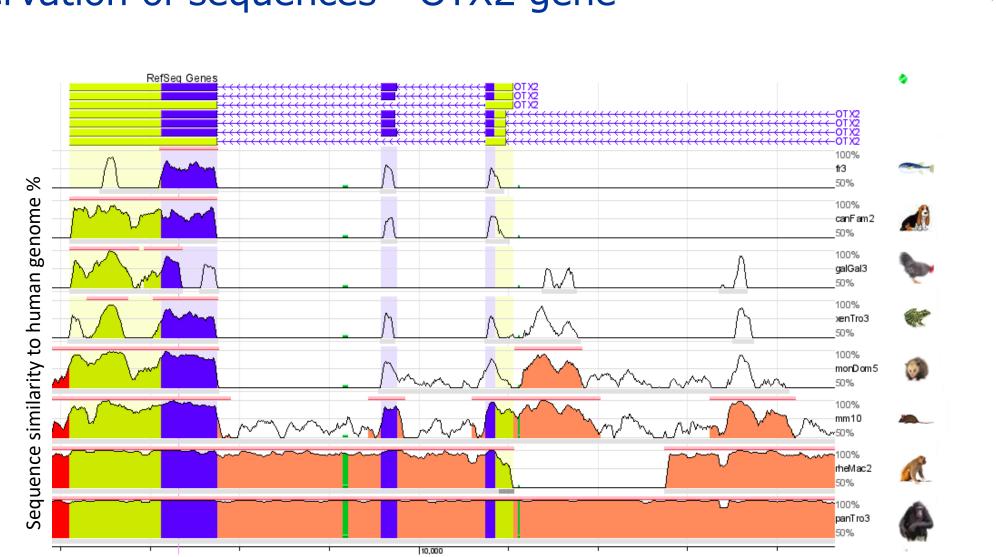
VL-5 Sequenzalignment - Teil 1

Dr. Paula Korkuć

Fachgebiet Züchtungsbiologie und molekulare Tierzüchtung Humboldt-Universität zu Berlin

16.11.2023

Overview for today


- Conservation and homology
- Sequence alignments
 - Excurse proteins and protein sequence
 - Pairwise alignments
 - Visualization of alignments \rightarrow dot plot
 - Scoring of alignments
 - Optimal alignment using Needleman-Wunsch algorithm

Differences between organisms

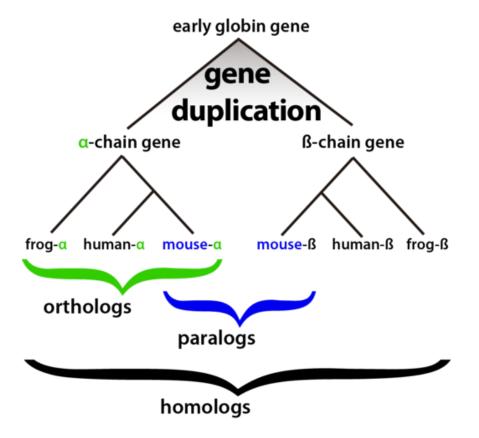
- DNA sequences change in the course of evolution:
 - Mutations, insertions, deletions
 - Chromosomal rearrangement: Duplications, inversions, translocations
- Genes are highly conserved (less variation)

→BUT: Even same gene (or resulting protein) from two closely related species are rarely identical

Conservation of sequences - OTX2 gene

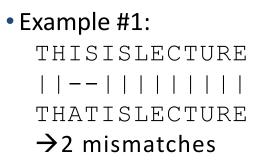
https://en.wikipedia.org/wiki/Conserved_sequence#/media/File:ECR_browser_showing_conserved_OTX2_gene_in_vertebrates.png

OLDI-UN


HUMBOLDT-UNIVERSITÄT

ZU BERLIN

Sequence homology



- Shared ancestry of sequences because of
 - Speciation event (orthologs)
 - Duplication event (paralogs)

But how to align homolog sequences?

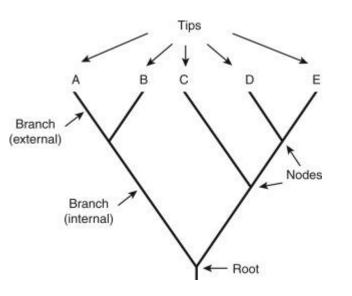
HUMBOLDT-UNIVERSITÄT ZUBERLIN


```
    Example #2: Mutation lead to insertion of three letters

        THISISISALECTURE

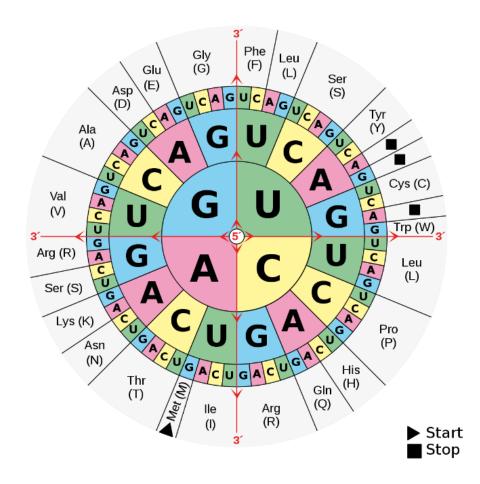
        ||--||-----

        THATISLECTURE →9 mismatches
        THISISISALECTURE
```

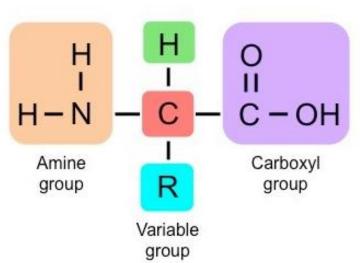

Sequence alignment

→Arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences

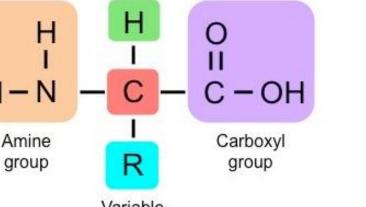
• Application:


- Uncharacterized sequences \rightarrow comparison in a database (gene, protein, family)
- Characterized sequences \rightarrow Phylogenetic trees
- Measuring similarity

Alignments at DNA or protein level



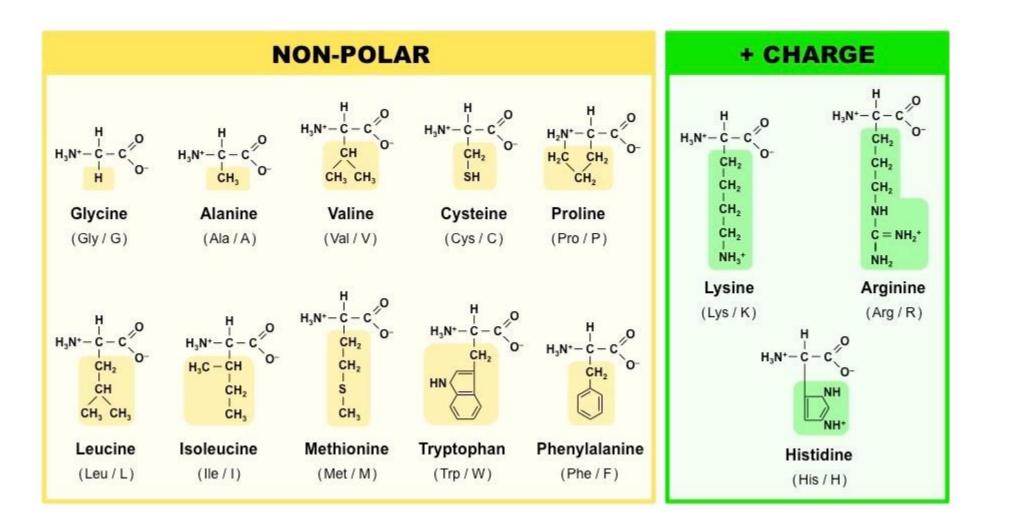
- Three amino acids are forming a codon
- 64 different codons
 - 3 codons are reserved for stop
 - 61 codons for amino acids
 - BUT: < 45 different tRNAs are produced
 - \rightarrow 3rd position in codon: "wobble base"



Amino acid structure

- Structure of a Generalised Amino Acid
 - An amine group (NH₂)
 - A carboxylic acid group (COOH)
 - A hydrogen atom (H)
 - A variable side chain (R) \rightarrow distinct chemical properties

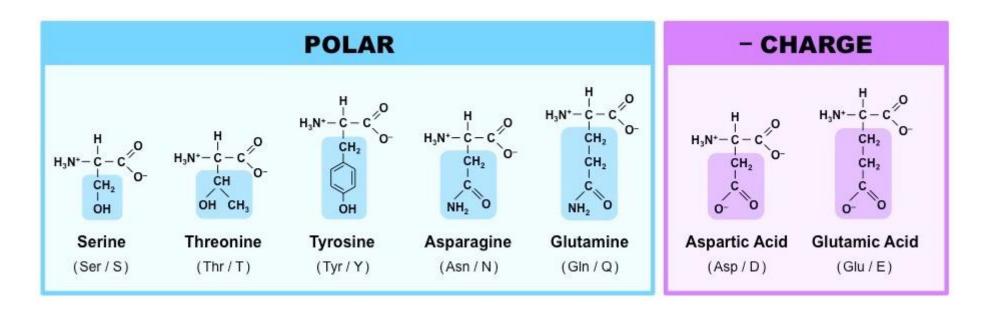
- Many amino acids together form polypeptides, which makeup proteins
- Most natural polypeptide chains contain between 50 and 2000 amino acid residues



HUMBOLDT UNIVERSITÄT

ZU BERLIN

20 universal amino acids



http://ib.bioninja.com.au/standard-level/topic-2-molecular-biology/24-proteins/amino-acids.html

20 universal amino acids

Properties: size, charge, polarity, hydrophobicity, flexibility

- Polar \rightarrow more soluble in water; hydrophilic \rightarrow outside of proteins
- Non-polar \rightarrow hydrophobic \rightarrow core of proteins

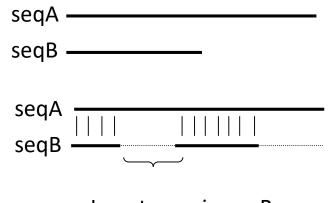
Sequence alignment

Pairwise sequence alignment

- Global or local alignment
- Comparatively simple algorithms
 - Find out conserved regions between the two sequences
 - Similarity searches in a database

Multiple sequence alignment

- Generally a global alignment
- Complex sophisticated algorithm
 - To detect regions of variability or conservation in a family of proteins
 - Phylogenetic analysis
 - Detection of homology between a newly sequenced gene and an existing gene family prediction of protein structure
 - Demonstration of homology in multigene families


Global versus local pairwise alignment

Global

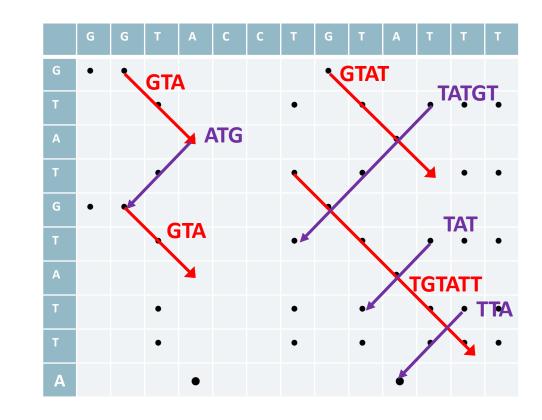
- Comparing sequences over their entire length
- Usually sequences are equally long
- Needleman-Wunsch algorithm

Insert gaps in seqB

Local

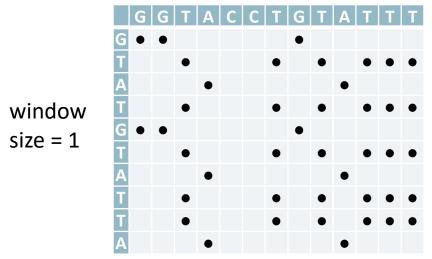
- Comparing sequences with partial homology
- Alignments describing most similar region(s)
- Possible to compare short vs. longer sequences
- Smith-Waterman algorithm

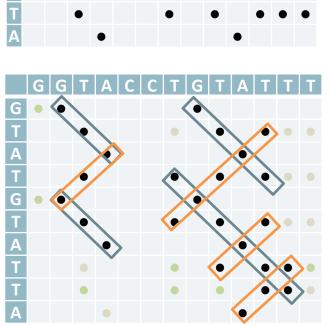
Ignore terminals in seqA

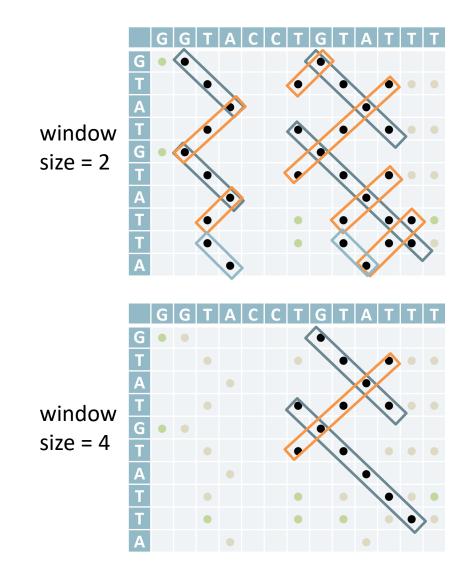

Pairwise alignments

- Gene sequence of interest: GGTACCTGTATTT
- Gene sequence with known function: GTATGTATTA

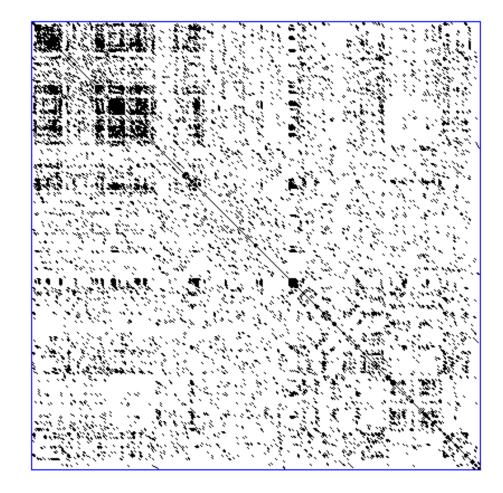
Dotplot


- Graphic representation
- Simplest detection method
- Reveal complex patterns
- 2-dimensional table:
 - rows= sequence 1
 - columns= sequence 2
 - mark with if identical

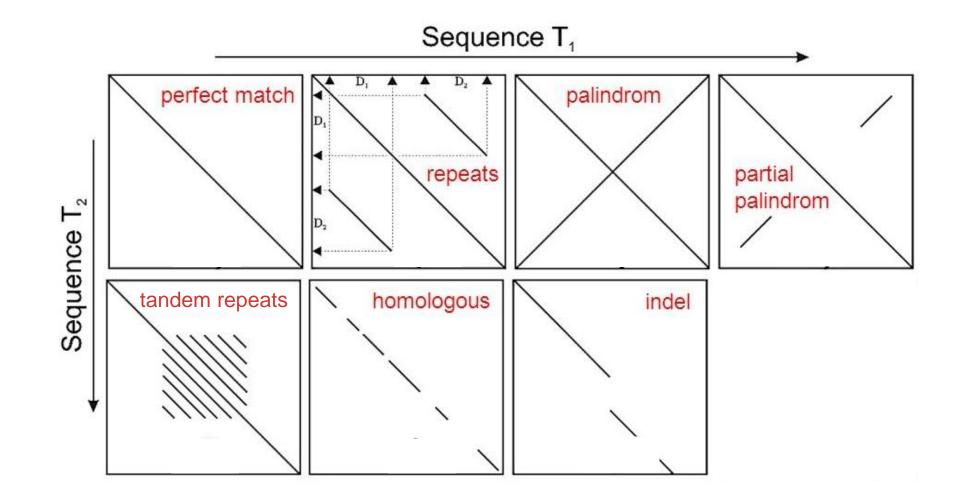

HUMBOLDT-UNIVERSITÄT ZU BERLIN


DT-UNIL BERLIN

Dot plots - remove noise



Dot plot example


Self-alignment

- Comparing a sequence with itself
 - Repeated domains
 - Motifs repeated many times
 - Mirror regions (palindromes) in nucleic acids

Interpretation of dot plots

Scoring of alignments

• In order to asses the quality of an alignment a scoring function is needed

• A very simple score: percentage of matches

Alignment: GGTACCTGTATTT seqA -GTA--TGTATTA seqB

9/13 = 69.2 %

Scoring of alignments

• Additive scoring with linear gap penalty:

- +1 for match
- -1 for mismatch
- -1 gap penalty

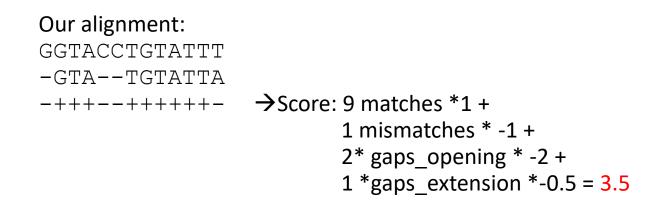
• Gap penalty (GAP):

- Introducing gaps is often needed for alignment
- Minimizing gaps in an alignment is important to create a useful alignment

```
• Score = \sum_{i=1}^{n} SIM(seqA_i, seqB_i) + #gaps * GAP
```

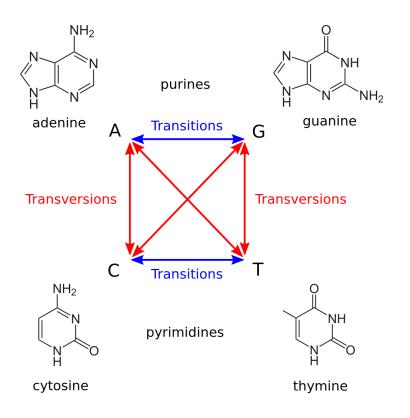
```
• Our alignment:
```

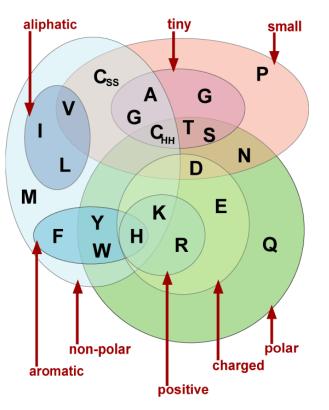
```
GGTACCTGTATTT


-GTA--TGTATTA

-+++--++++++- → Score = 9 matches * 1 + 1 mismatches *-1 + 3 gaps * -1 = 5
```

Scoring of alignments


- Additive scoring with affine gap penalty
- GOP is called "gap opening penalty" → not too many small gaps (e.g. -2)
- GEP is called "gap extension penalty" → costs less (e.g. -0.5)
- $\sum_{i=1}^{n} SIM(seqA_i, seqB_i) + #gap_openings * GOP + #gap_extension * GAP$


Substitution probabilities

Transition are more likely Transversion are rare

Amino acids with similar properties are also more likely to be exchanged

Scoring matrices

• The purpose of the scoring matrix is to score one nucleotide against another, e.g. A matched to G is worse than A matched to T

	Α	С	G	Т	-
Α	1	-1	-1	-0.5	-0.5
С	-1	1	-0.5	-1	-0.5
G	-1	-0.5	1	-1	-0.5
Т	-0.5	-1	-1	1	-0.5
-	-0.5	-0.5	-0.5	-0.5	NA

Our alignment: GGTACCTGTATTT -GTA--TGTATTA -+++--+++++-

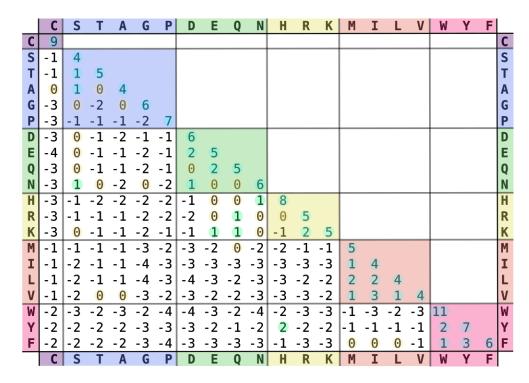
→Score: 9 matches * 1 + 1 mismatch(A/T) * -0.5 + 3 gaps * -0.5 = 7

(no gap openings)

Scoring matrices

- Scoring matrices are created based on biological evidence
- Alignments can be thought of as two sequences that differ due to mutations
- Therefore substitution matrices for proteins:
 - BLOSUM (Blocks Substitution Matrix)
 - PAM (Point Accepted Mutation) matrix

Scoring matrices - BLOSUM

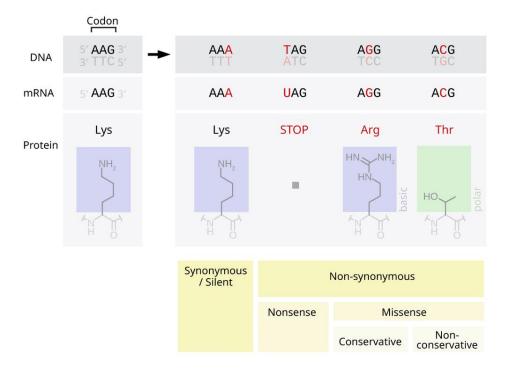


- BLOSUM (Blocks Substitution Matrix)
 - Amino acids in the table grouped according to the chemistry of the side chain
 - Each value in the matrix is calculated by dividing the frequency of occurrence of the amino acid pair in the BLOCKS database
 - Score = 0 : Frequency with which two amino acids were found aligned in the database was as expected by chance
 - Score >0 : Alignment was found more often than by chance
 - Score <0 : Alignment was found less often than by chance
 - BLOSUM r: the matrix built from blocks with no more than r% of similarity
 - BLOSUM62 is the matrix built using sequences with no more than 62% similarity
 - BLOSUM62: moderate related proteins
 - BLOSUM Proteins
 - BLOSUM45: distantly related proteins

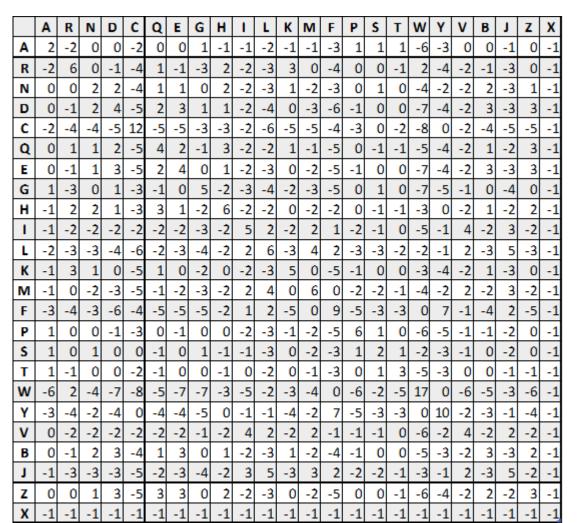
Fun fact about BLOSUM62

- BLOSUM 62 is the default matrix for protein BLAST
- BLOSUM62 used for so many years as a standard is not exactly accurate according to the algorithm described by Henikoff and Henikoff
- Surprisingly, the miscalculated BLOSUM62 improves search performance

https://de.wikipedia.org/wiki/BLOSUM#/media/Datei:Blosum62-dayhoff-ordering.svg


Scoring matrices - PAM

• PAM (Point Accepted Mutation)


- Replacement of a amino acid with another amino acid, which is accepted by the processes of natural selection
- Example: PAM for lysine → Missense mutations may be classed as PAMs if the mutated protein is not rejected by natural selection

• Substitution matrix PAMn:

- PAM1 matrix indicates the rate at which substitution would be expected if 1% of the amino acids had changed, thus corresponding to 99% similarity
- Not quite correct, but good to remember: Percentage of allowed mutations

PAM250

- PAM250 is commonly used for sequence comparison
- Probabilities in a PAM matrix are multiplied by 10000 for the sake of clarity

Differences between PAM and BLOSUM

PAM

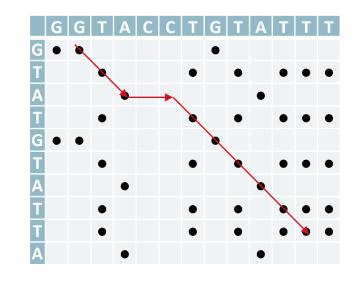
- Based on global alignments of closely related proteins
- PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence
- Other PAM matrices are extrapolated from PAM1

 Higher numbers in matrices naming scheme denote larger evolutionary distance

BLOSUM

- Based on local alignments
- BLOSUM 62 is a matrix calculated from comparisons of sequences with no more than 62% identical
- Based on observed alignments; they are not extrapolated from comparisons of closely related proteins
- Larger numbers in matrices naming scheme denote higher sequence similarity and therefore smaller evolutionary distance

Finding the optimal alignment


• **Optimal alignment** → Find the minimal path through the dot plot

• Needleman- Wunsch algorithm (1970)

- First applications of dynamic programming to compare biological sequences
- Algorithm divides a large problem (e.g. sequence) into smaller problems, and it uses those solutions to find an optimal solution to the larger problem
- Finding optimal **global** alignment

• Smith-Waterman algorithm (1981)

• Instead of looking at the entire sequence, the Smith-Waterman algorithm compares segments of all possible lengths and optimizes the similarity measure

- Example:
 - Sequence A: GGCAG
 - Sequence B: GAGCTG
 - Recursion (Needleman-Wunsch):

$$D_{1,1} = max \begin{cases} D_{1-1,1-1} + score(a_1, b_1) \\ D_{1-1,1} + score(a_1, -) \\ D_{1,1-1} + score(-, b_1) \end{cases}$$

$$= max \begin{cases} 0+1\\ -2+-2\\ -2+-2 \end{cases}$$

Score: +1 for match -1 for mismatch -2 for gap

В G. D G. -8 -10 -12 0 -2 -4 -6 -2 1 G_1 -4 G_2 Α -6 C_3 -8 **G**₅ -10

- Example:
 - Sequence A: GGCAG
 - Sequence B: GAGCTG
 - Recursion (Needleman-Wunsch):

$$D_{1,2} = max \begin{cases} D_{1-1,2-1} + score(a_1, b_2) \\ D_{1-1,2} + score(a_1, -) \\ D_{1,2-1} + score(-, b_2) \end{cases}$$

$$= max \begin{cases} -2 + & -1 \\ -4 + & -2 \\ 1 + & -2 \end{cases}$$

Score: +1 for match -1 for mismatch -2 for gap

В D G. G. -8 -10 -12 0 -2 -4 -6 -2 -1 1 G_1 -4 G_2 Α -6 C_3 -8 **G**₅ -10

- Example:
 - Sequence A: GGCAG
 - Sequence B: GAGCTG
 - Recursion (Needleman-Wunsch):

 $D_{1,3} = max \begin{cases} D_{1-1,3-1} + score(a_1, b_3) \\ D_{1-1,3} + score(a_1, -) \\ D_{1,3-1} + score(-, b_3) \end{cases}$

$$= max \begin{cases} -4 + & 1\\ -6 + & -2\\ -1 + & -2 \end{cases}$$

Score: +1 for match -1 for mismatch -2 for gap

> В G. -8 -10 -12 0 -2 -4 -6 1 -2 -1 -3 G_1 G₂ -4 А **C**₃ -6 A_4 -8 G_5 -10

- Example:
 - Sequence A: GGCAG
 - Sequence B: GAGCTG
 - Recursion (Needleman-Wunsch):

 $D_{i,j} = max \begin{cases} D_{i-1,j-1} + score(a_i, b_j) \rightarrow \text{diagonal} \\ D_{i-1,j} + score(a_i, -) \rightarrow \text{von oben} \\ D_{i,j-1} + score(-, b_j) \rightarrow \text{von links} \end{cases}$

→ proceed until completely filled matrix: Score = 1
 → trace back

Score: +1 for match -1 for mismatch -2 for gap

	В							
	D	-	G ₁	A ₂	G ₃	C ₄	T ₅	G ₆
	-	0	-2	-4	-6	-8	-10	-12
	G ₁	-2	1	-1	-3	-5	-7	-9
A	G ₂	-4	-1	0	0	-2	-4	-6
	C ₃	-6	-3	-2	-1	1	-1	-3
	A ₄	-8	-5	-2	-3	-1	0	-2
	G ₅	-10	-7	-4	-1	-3	-2	1

17

• Tracking back:

- Starting in lower right corner
- Going up, left or diagonal (up-left)
 - Diagonal \rightarrow match or mismatch
 - Horizontal or vertical ightarrow indel

• Alignment:

- Diagonal \rightarrow the letters from two sequences are aligned
- Left ightarrow a gap is introduced in the left sequence
- Up ightarrow a gap is introduced in the top sequence
- G_GCAG GAGCTG
 - + = + + = +

В								
G ₁	A ₂	G ₃	C ₄	T ₅				
-2	-4	-6	-8	-10	-			

	0	_	-	-	-		
G ₁	-2	1	-1	-3	-5	-7	-9
G ₂	-4	-1	0	0	-2	-4	-6
	-6						
A ₄	-8	-5	-2	-3	-1	0	-2
G ₅	-10	-7	-4	-1	-3	-2	1

Α

Summary

- Conservation and homology
- Sequence alignments
 - Excurse proteins and protein sequence
 - Pairwise alignments
 - Visualization of alignments \rightarrow dot plot
 - Scoring of alignments
 - Optimal alignment using Needleman-Wunsch algorithm

Assignment for today: see Moodle