Die rasanten Erfolge in der Entwicklung von neuen, auf neuronalen Netzen basierenden Methoden haben völlig neue Möglichkeiten in der Datenanalyse und -synthese ermöglicht und zu vielen neuen Anwendungen geführt.In diesem Modul sollen die neuen Konzepte im Bereich des Deep Learnings mit einem Fokus auf Verfahren aus Computer Vision, Computer Graphik und Visual Computing vorgestellt werden. Dazu gehören Grundlagen von neuronalen Netzen mit deren Architekturen (z.B. convolutional networks, transformer), Lernverfahren, Datenaufbereitung und Methoden der Erklärbarkeit für die black box Verfahren. Darüber hinaus werden Konzepte für die Bild- und Videoanalyse wie Objektdetektion, Klassifikation, Segmentierung, 3D Rekonstruktion und Bewegungsanalyse sowie für die Bild- und Videosynthese durch Autoenkoder, GANs oder Diffussionsnetze vorgestellt. Dabei wird auch die Integration klassischer Vision Methoden und Vorwissen in die datengetriebenen Ansätze für höhere Robustheit und kleine Trainingsdatensätzen vorgestellt.

Begleitend zur gleichnahmigen Vorlesung wird eine Übung angeboten, in denen die Studierenden in praktischen Beispielen verschiedene Konzepte des Deep Learnings selbst untersuchen können.

Semester: SoSe 2024