0. Introduction: a glimpse of Algebraic Geometry
I. Rings, ideals and modules
I.2. The spectrum of a ring
I.3. More on PID and UFD
I.4. Localization
I.5. Radicals
I.6. Modules
I.7. Tensor products
I.8. Change of rings
I.9. Nakayama's lemma
II. Finiteness conditions
II.1. Some homological algebra}
II.2. Finitely presented modules}
II.3. Noetherian rings and modules
II.4. Artinian rings and modules
II.5. The structure of Artinian rings
II.6. Connected components
II.7. Irreducible components
II.8. Primary ideals
II.9. Primary decomposition
III. Integral extensions and the Nullstellensatz
III.1. Finite and integral extensions
III.2. The integral closure
III.3. Going up and going down
III.4. Noether normalization
III.5. Hilbert's Nullstellensatz
IV. Dimension
IV.1. Krull dimension
IV.2. Equidimensional rings}
IV.3. Dimension of affine varieties
IV.4. Transcendence degree
- Course owner: Anna Otwinowska